UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD DE TECNOLOGÍA INGENIERÍA DE MANUFACTURA

Programa Académico	Ingeniería de Manufactura
Asignatura	Programación de computadores (*4)
Código:	IMFD43
Área:	Automática
Año de Actualización	I Semestre de 2021
Semestre:	3
Tipo de asignatura:	Teórico-Práctica
Número de créditos:	4
Total horas:	2 h teóricas, 3 h prácticas
Profesores:	Wilson Pérez Castro
Director:	Ricardo Acosta Acosta

1. Breve descripción

Forma parte de la etapa disciplinar del programa de Ingeniería de Manufactura. Ofrece al estudiante un panorama sobre el campo de la automatización en los procesos industriales o de manufactura, identificando las herramientas que tienen una mayor aplicación en el quehacer profesional del Ingeniero en Manufactura desde el punto de vista del desarrollo o el uso adecuado de herramientas de software.

2. Objetivos

Objetivo del programa

Formar al estudiante en el diseño, selección, mantenimiento y montaje de máquinas y elementos de máquinas, equipos e instrumentos

Formar al estudiante para selección, operación y calibración de diversos sistemas y aparatos de metrología en el marco de los sistemas de estandarización e intercambiabilidad.

Formar al estudiante en la integración de subsistemas para controlar y/o automatizar máquinas, equipos o procesos industriales

Promover en el estudiante una formación integral con pensamiento crítico y reflexivo que le permita desempeñarse con idoneidad, humanismo y sentido ético.

Objetivo de la asignatura

Formar al estudiante en el manejo de terminología y conceptos básicos sobre Ciencias de la computación	
Formar al estudiante en la teoría del hardware y software orientados al diseño de algoritmos	
Formar al estudiante en la selección del tipo de variables y los distintos operadores	
Formar al estudiante en el manejo de herramientas repetitivas o ciclicas	

Pie de Página

Formar al estudiante en el manejo algoritmos recursivos de uso común	

Formar al estudiante en el diseño de interfaces HMI para la interacción entre hombre y máquina

3. Resultados de aprendizaje

Resultados de aprendizaje del programa

Diseñar, seleccionar y realizar montajes de máquinas, equipos e instrumentos a su cargo para garantizar su correcto desempeño

Actuar en la solución de problemas, con criterios económicos, sociales, ambientales y políticos de manera crítica y reflexiva generando un impacto positivo en la sociedad

Liderar proyectos colaborativos generando intercambio de conocimiento, para actuar como profesional íntegro, con actitud proactiva, tolerancia y respeto

Resultados de aprendizaje de la asignatura	
Identificar los componentes básicos de un sistema de computo desde el punto de vista del hardware y el software	
Usar la teoría que gobierna la cibernética de los sistemas de computo para entender cuál es el rol del programador y cómo enteder el lenguaje de la máquina	
Seleccionar componentes usando diagramas de flujo de datos para realizar el diseño de un tarea	
Crear programas que involucren tareas repetitivas dentro del contexto de la manufactura	

Crear soluciones ue involucren algoritmos recursivos usando estructura de datos	
Elaborar simulaciones que en lo posible involucren herramientas como estructura de datos e IoT	

4. Contenido

Capítulo I. Introducción a la Programación [4, 7, 8, 9] (5 h), Terminología básica en informática. Componentes de un computador digital, Diferentes tipos de Software: Sistemas Operativos, lenguajes de Programación, Paquetes, etc. Estructuras básicas de control. Diagramación estructurada.

Capítulo II. Programación lineal (Usando Python) [3, 5, 6, 8] (20 h), Conceptos básicos: ¿Qué es Phyton?, Operaciones sencillas, flotantes, cadenas de texto, editor, Estructuras de Control, Funciones y módulos, Excepciones y archivos, Programación funcional, Programación Orientada a objetos.

Capítulo III. Módulos de programación [1, 2, 8] (15 h), Servicios del sistema operativo, Software matemático. Servicios y aplicaciones web. Documentación y test de programas.

Pie de Página

Capítulo IV. Uso de hojas de cálculo (Programación OBP) [8, 9] (37 h), Introducción, Concepto de macro, Grabación de macros, Uso de referencias absolutas. Administrar las macros Cuadro de diálogo de macros. Ejecutar una macro. Eliminar una macro. Ubicación y opciones, Editar el código de las macros. Introducción al entorno de Visual Basic para aplicaciones (vba). El modelo de objetos de Visual Basic: métodos y propiedades. Los módulos, los procedimientos y las palabras reservadas. Conceptos de programación estructurada. Inserción de código en una macro existente. Desarrollo de aplicaciones. Manejo de solver.

PRÁCTICA 1. Uso y simulación de diagramas de flujo de datos

PRÁCTICA 2. Uso del editor de Python

PRÁCTICA 3. Uso de condicionales con bifurcaciones

PRÁCTICA 4. Herramientas ciclicas para el registro de información

PRÁCTICA 5. Herramientas de tiempo usando python

PRÁCTICA 6. Funciones propias usando Python

PRÁCTICA 7. Manipulación de datos en MS Excel

PRÁCTICA 8. Uso de macros

PRÁCTICA 9. Edición de macros

PRÁCTICA 10. Uso de VBA

PRÁCTICA 11. Solución de problemas con solver

5. Requisitos

Algebra Lineal (*3) (CB223) del semestre 2

6. Recursos

Video tutoriales, Laboratorio de Resistencia de Materiales, Laboratorio de Fluídos, Matlab en línea, LabVIEW (2013).

Bibliografía:

- 1. Joyanes, Aguilar, Luis. Fundamentos de Programación. Editorial Mc Graw-
- Hill. 2. Peter A Darnell, Philip E. Margolis. Springer-Verlag, 1991
- 3. Downey, Allen. How to think like a computer scientist: learning with Python. Wellesley: Green Tea Press, 2002. ISBN 9781441419071.
- 4. Chun, Wesley. Core Python programming. 2nd ed. Upper Saddle River: Prentice Hall, 2007. ISBN 0132269937.
- 5. Guzdial, Mark. Introduction to computing & programming in Python: a multimedia approach. 2nd ed. Upper Saddle River: Pearson: Prentice Hall, 2010. ISBN 9780136060239.
- 6. Langtangen, Hans Petter. Python scripting for computational science. 3rd ed. Berlin: Springer, 2008. ISBN 9783540739159. Pilgrim, Mark. Dive into Python. New York: Apress, 2004. ISBN 1590593561.
- 7. http://wiki.python.org/moin/UsefulModules
- 8. http://www.python.org/community/sigs/current/edu-sig/

7. Herramientas técnicas de soporte para la enseñanza

- 1) Catedra
- 2) Utilización de ejercicio tipo de cada tema.
- 3) Lecturas de libros, artículos y reflexiones personales.
- 4) Exposiciones orales
- 5) Análisis de la información
- 6) Portafolio
- 7) Práctica (virtual)

8. Trabajos en laboratorio y proyectos

Pie de Página

Cuentan con una guía de laboratorio con el paso a paso y su dinámica, Se realizan de manera virtual, El proyecto final está relacionado con la planta virtual de FESTO.

9. Métodos de aprendizaje

Consultas en material bibliográfico, Foro- Pregunta.

10. Evaluación

Exámenes parciales, Exámen final, Informes escritos de cada una de las prácticas de laboratorio., Tareas de seguimiento, Porcentajes: Parcial I - 30 % (Incluye los temas hasta la cuarta semana), Parcial II - 20 % (Incluye temas de la quinta a la octava semana), Prácticas de laboratorio - 20 % (Incluye los informes 15 % y seguimiento 5 %), Proyecto final - 30 % (Sustentación 15 %, Funciona 10 %, Informe 5 %).